BOOSTER PARAMETER LIST

WITH 40 KV RF VOLTAGE

Ecoster Technical Note
No. 21

Z. Parsa

MARCH 10, 1986

HIGH ENERGY FACILITIES

Erockhaven National Laboratory

ABSTRACT

THIS NOTE DESCRIBES THE PARAMETER LIST FOR THE AGS-BOOSTER, WITH 40 KV RF VOLTAGE FOR PROTONS; AND THE CHROMATICITY CORRECTION 1,2,4,7 SEXTUPOLE CONFIGURATION. A SCHEMATIC LAYOUT OF THE LATTICE AND ITS SUPERPERIODS ARE ALSO INCLUDED.

INTRODUCTION

This note describes the parameter list of the AGS-Booster with the 40 KV RF Voltage for protons; and tunes of 4.82 and 4.83. The chromaticity correction sextupole configuration is 1,2,4,7 and the eddy current sextupole strengths are taken to be 0.12 Tesla per meter square [1]. A schematic layout of the Booster lattice and its superperiods are also included [2-4]. In section II the present values of the Booster parameters are tabulated, [note that, the values listed are for theoretical calculations]. This updates the Booster parameter list given in Reference 5.

References:

- 1. Calculation of Eddy Currents, BST/TN 4, G. Morgan and S. Kahn, (January 1986).
- 2. Booster Lattice, Booster Tech. Note No. 1, E. Courant and Z. Parsa, (January 15, 1986).
- 3. Chromaticity Correction for the AGS Booster with 1,2,4,7 Sextupole Configuration, BST/TN 17, E. Courant and Z. Parsa, (March 5, 1986).
- 4. Booster Coordinates, Booster Tech. Note No. 6, Z. Parsa, (January 28, 1986).
- 5. AGS Booster Parameter List, Booster Tech. Note No. 2, Z. Parsa, (January 16, 1986).

AGS BOOSTER PARAMETER LIST

ENERGY [MeV]

INJECTION:

PROTONS (INCLUDING POL PROTONS) 200 MeV

HEAVY IONS > 1 MeV/AMU

[POL == POLARIZED]

EJECTION (MAXIMUM)

PROTONS (INCLUDING POL PROTONS) 1 GeV

HEAVY IONS P = 5 Q/A GeV/AMU-C

[Q is the charge of the Heavy Ions (whether fully stripped or not) delivered from the Tandem.]

LATTICE

CIRCUMFERENCE 201.78 M (1/4 AGS)

PERIODICITY 6

NUMBER OF CELLS 24 FODO

[SEPARATE FUNCTION, MISSING DIPOLS]

LENGTH 8.4075 M

PHASE ADVANCE/CELL 72.3, 72.45

TUNES QX=4.82, QY=4.83

BETAX MAX/MIN 13.865/3.5754 BETAY MAX/MIN 13.644/3.7033

XP MAX 2.9515 M

TRANSITION GAMMA 4.8812

RF SYSTEM

NUMBER OF STATIONS (3 IN TOTAL)

1 FOR PROTONS (INCLUDING POL PROTONS)

2 FOR HEAVY IONS

[where POL== POLARIZED]

HARMONIC NUMBER

3 FOR PROTONS (INCLUDING POL PROTONS)

3 FOR HEAVY IONS (1 FOR RHIC)

FREQUENCY RANGE (MHz)

FOR PROTONS (INCLUDING POL PROTONS) 2.5 - 3.9 FOR HEAVY IONS 0.178 - 2.5 (.06 - .84 FOR RHIC)

PEAK RF VOLTAGE [KV]

FOR PROTONS (INCLUDING POL PROTONS) 40 FOR HEAVY IONS 17

ACCELERATION TIME [M-SEC]

FOR PROTONS (INCLUDING POL PROTONS) 50 FOR HEAVY IONS 500

REPETITION RATE

FOR PROTONS
FOR POL PROTONS
FOR HEAVY IONS

10 Hz (4 PULSES/AGS PULSE)
1 Hz (1 PULSE/AGS PULSE)
1 Hz (1 PULSE/AGS PULSE)

DIPOLES

[DIPOLES ARE CURVED AND WEDGED FOR O ENTRANCE ANGLE]

NUMBER 36

LENGTH (MAGNETIC) 2.4 M

GAP 82.55 MM

GAP VACUUM CHAMBER 66 MM

GOOD FIELD REGION (<10) 16 X 6.6 CM

-4

INJECTION FIELD [KG]

FOR PROTONS (INCLUDING POL PROTONS) 1.5633 FOR HEAVY IONS 0.1047 A/Q

EJECTION FIELD [KG]

FOR PROTONS (INCLUDING POL PROTONS) 4.1049 FOR HEAVY IONS 12.129

LAMINATION THICKNESS 1.5 MM

[O.6 MM AROUND ENDS]

QUADRUPOLES

NUMBER

48

LENGTH (MAGNETIC) 0.50375 M

APERTURE 16.52 CM

VACUUM CHAMBER AP. 15.5 CM

[AP. == APERTURE]

WITH GF = 11.999 [KG/M], GD = 12.369 [KG/M]

INJECTION POLE TIP FIELD [KG]

FOR PROTONS (INCLUDING POL PROTONS)

BF = 0.98992 , BD = 1.0204

FOR HEAVY IONS

BF = 0.06635 A/Q , BD = 0.0683 A/Q

EJECTION POLE TIP FIELD [KG]

BF = 2.5994 , BD = 2.6795

FOR PROTONS (INCLUDING POL PROTONS)

FOR HEAVY IONS

BF = 7.6805 , BD = 7.917

LAMINATION THICKNESS 0.6 MM

FIELD QUALITY

SEXTUPOLE HARMONIC 0.0

(6 THETA/2 THETA) (SHAPE POLE TIP TO ELIMINATE)

ALL OTHER HARMONICS < 10 -11MAX. VACUUM PRESSURE (N2 EQU.) 3 x 10 TORR MAX. INTENSITY (PARTICLES PER PULSE) FOR PROTONS $1 - 3 \times 10$ 12 FOR POL PROTONS 10 11 2 FOR HEAVY IONS 10 A/ Q SEXTUPOLES _____ LOCATION 1,7 (SF), 2,4 (SD) NUMBER 24 (12 SF + 12 SD)LENGTH 10 CM APERTURE 16.52 CM AT 1 GEV WITH INTEGRATED STRENGTH [T/M]: 1.761 INJECTION POLE TIP FIELD [KG] FOR PROTONS (INCLUDING POL PROTONS) 0.45761 FOR HEAVY IONS 0.03065 A/QEJECTION POLE TIP FIELD [KG] FOR PROTONS (INCLUDING POL PROTONS) 1.2015 FOR HEAVY IONS

3.5504

ACKNOWLEDGEMENT:

We acknowledge the efforts of E. Courant, members of the Booster Design study group, and R. Alvino's assistance.

Fig. 1 The Booster Lattice